Алгебра и начала математического анализа. 11
класс. Учебник.  Никольский С.М. и др.

Базовый и профильный уровни

8-е изд. — М.: Просвещение, 2009. — 464 с.

Систематизация и анализ ранее изученного материала требует от учеников затрат времени и сил. С помощью учебника Алгебра и начала математического анализа. 11 класс. Учебник. Никольский С.М. и др. этот процесс станет доступным и понятным, поскольку материал учебника систематизирован, подается последовательно и в доступной форме. Автор при создании пособия не опирается на определенных авторов учебников в предыдущих классах, и поэтому, каждый ученик может использовать его во время подготовки к занятиям. Предстоящее поступление в вуз вызывает у школьников чувство страха, но с использованием данного пособия и при тщательной подготовке выпускник сможет не волноваться за свои результаты.

Формат:
djvu / zip
   

Размер:
15,8 Мб

Скачать:   RGhost

Формат:
pdf / zip
   

Размер:
43 Мб

Скачать:   RGhost

Примечание: В PDF
качество лучше, почти отличное. Сделано из одного и того же скана, 150
dpi, цветной. Но в DJVU
получается немного хуже. Это тот случай, когда размер имеет значение.

ОГЛАВЛЕНИЕ
ГЛАВА I.
ФУНКЦИИ. ПРОИЗВОДНЫЕ. ИНТЕГРАЛЫ
§ 1. Функции и их графики 3
1.1. Элементарные функции 3
1.2. Область определения и область изменения функции. Ограниченность
функции 5
1.3. Четность, нечетность, периодичность функций 8
1.4. Промежутки возрастания, убывания, знакопостоянства и нули функции
14
1.5. Исследование функций и построение их графиков элементарными
методами 18
1.6. Основные способы преобразования графиков 21
1.7*. Графики функций, содержащих модули 34
1.8*. Графики сложных функций 39
§ 2. Предел функции и непрерывность 45
2.1. Понятие предела функции 45
2.2. Односторонние пределы 49
2.3. Свойства пределов функций 56
2.4. Понятие непрерывности функции 60
2.5. Непрерывность элементарных функций 65
2.6. Разрывные функции 67
§ 3. Обратные функции 72
3.1. Понятие обратной функции 72
3.2*. Взаимно обратные функции 75
3.3*. Обратные тригонометрические функции 80
3.4*. Примеры использования обратных тригонометрических функций 85
§ 4. Производная 89
4.1. Понятие производной 89
4.2. Производная суммы. Производная разности 96
4.3*. Непрерывность функции, имеющей производную. Дифференциал 99
4.4. Производная произведения. Производная частного …. 101
4.5. Производные элементарных функций 103
4.6. Производная сложной функции 108
4.7*. Производная обратной функции 111
§ 5. Применение производной 114
5.1. Максимум и минимум функции 114
5.2. Уравнение касательной 121
5.3. Приближенные вычисления 125
5.4*. Теоремы о среднем 127
5.5. Возрастание и убывание функции 129
5.6. Производные высших порядков 134
5.7*. Выпуклость графика функции 137
5.8*. Экстремум функции с единственной критической точкой . 141
5.9. Задачи на максимум и минимум 145
5.10*. Асимптоты. Дробно-линейная функция 149
5.11. Построение графиков функций с применением производных 156
5.12*. Формула и ряд Тейлора 162
§ 6. Первообразная и интеграл 167
6.1. Понятие первообразной 167
6.2*. Замена переменной. Интегрирование по частям 173
6.3. Площадь криволинейной трапеции 175
6.4. Определенный интеграл 178
6.5*. Приближенное вычисление определенного интеграла . . . 181
6.6. Формула Ньютона — Лейбница 185
6.7. Свойства определенного интеграла 191
6.8*. Применение определенных интегралов в геометрических и физических
задачах 196
6.9*. Понятие дифференциального уравнения 202
6.10*. Задачи, приводящие к дифференциальным уравнениям . . 206
Исторические сведения 212
ГЛАВА II. УРАВНЕНИЯ. НЕРАВЕНСТВА. СИСТЕМЫ
§ 7. Равносильность уравнений и неравенств 214
7.1. Равносильные преобразования уравнений 214
7.2. Равносильные преобразования неравенств 219
§ 8. Уравнения-следствия 225
8.1. Понятие уравнения-следствия 225
8.2. Возведение уравнения в четную степень 229
8.3. Потенцирование логарифмических уравнений 231
8.4. Другие преобразования, приводящие к уравнению-следствию 233
8.5. Применение нескольких преобразований, приводящих к
уравнению-следствию 237
§ 9. Равносильность уравнений и неравенств системам 240
9.1. Основные понятия 240
9.2. Решение уравнений с помощью систем 243
9.3. Решение уравнений с помощью систем (продолжение) . . 247
9.4*. Уравнения вида f(a (х)) = /»(Р (х)) 253
9.5. Решение неравенств с помощью систем 256
9.6. Решение неравенств с помощью систем (продолжение) . . 260
9.7*. Неравенства вида /(а (х)) > f($ (x)) 263
§ 10. Равносильность уравнений на множествах 266
10.1. Основные понятия 266
10.2. Возведение уравнения в четную степень 268
10.3*. Умножение уравнения на функцию 270
10.4*. Другие преобразования уравнений 273
10.5*. Применение нескольких преобразований 277
10.6*. Уравнения с дополнительными условиями 281
§ 11. Равносильность неравенств на множествах 283
11.1. Основные понятия 283
11.2. Возведение неравенства в четную степень 285
11.3*. Умножение неравенства на функцию 288
11.4*. Другие преобразования неравенств 290
11.5*. Применение нескольких преобразований 294
11.6*. Неравенства с дополнительными условиями 298
11.7*. Нестрогие неравенства 301
§ 12. Метод промежутков для уравнений и неравенств 303
12.1. Уравнения с модулями 303
12.2. Неравенства с модулями 307
12.3. Метод интервалов для непрерывных функций 311
§ 13*. Использование свойств функций при решении уравнений и
неравенств 314
13.1*. Использование областей существования функций …. 314
13.2*. Использование неотрицательности функций 317
13.3*. Использование ограниченности функций 319
13.4*. Использование монотонности и экстремумов функций . . 325
13.5*. Использование свойств синуса и косинуса 328
§ 14. Системы уравнений с несколькими неизвестными 331
14.1. Равносильность систем 331
14.2. Система-следствие 337
14.3. Метод замены неизвестных 344
14.4*. Рассуждения с числовыми значениями при решении систем уравнений
348
§ 15*. Уравнения, неравенства и системы с параметрами 355
15.1*. Уравнения с параметром 355
15.2*. Неравенства с параметром 360
15.3*. Системы уравнений с параметром 363
15.4*. Задачи с условиями 367
Исторические сведения 374
ГЛАВА III. КОМПЛЕКСНЫЕ ЧИСЛА
§ 16*. Алгебраическая форма и геометрическая интерпретация комплексных
чисел 379
16.1*. Алгебраическая форма комплексного числа 379
16.2*. Сопряженные комплексные числа 384
16.3*. Геометрическая интерпретация комплексного числа . . . 386
§ 17*. Тригонометрическая форма комплексных чисел 390
17.1*. Тригонометрическая форма комплексного числа …. 390
17.2*. Корни из комплексных чисел и их свойства 396
§ 18*. Корни многочленов. Показательная форма комплексных чисел 401
18.1*. Корни многочленов 401
18.2*. Показательная форма комплексного числа 405
Исторические сведения 408
ЗАДАНИЯ ДЛЯ ПОВТОРЕНИЯ 410
Приложения 437
1. Таблица производных 437
2. Таблица интегралов 438
3. Свойства логарифмов 438
4. Основные формулы тригонометрии 439
5. Простейшие тригонометрические уравнения 439
Предметный указатель 440
Ответы 443


Share on FacebookShare on VKShare on Google+Tweet about this on Twitter

Читайте также: